I know dy/dx for example means "derivative of y with respect to x," but there's another context that confuses me. You will generally just see a dx term sitting at the end of an integral equation an...
A "signed definite integral" for computing work and other "net change" calculations. The value of an expression such as $\int_0^1 x^2\,dx$ comes out the same under all these interpretations, of course. In more general settings, the three interpretations generalize in different ways, so that the "dx" comes to mean different things.
The symbol used for integration, $\int$, is in fact just a stylized "S" for "sum"; The classical definition of the definite integral is $\int_a^b f (x) dx = \lim_ {\Delta x \to 0} \sum_ {x=a}^ {b} f (x)\Delta x$; the limit of the Riemann sum of f (x) between a and b as the increment of X approaches zero (and thus the number of rectangles approaches infinity).
Okay this may sound stupid but I need a little help... What do $\Large \frac {d} {dx}$ and $\Large \frac {dy} {dx}$ mean? I need a thorough explanation. Thanks.
Well, $\delta x$ means different things depending on the context. For example, it has a particular meaning in variational calculus, and a completely different one in functional calculus...
I am working on trying to solve this problem: Prove: $\\int \\sin^n{x} \\ dx = -\\frac{1}{n} \\cos{x} \\cdot \\sin^{n - 1}{x} + \\frac{n - 1}{n} \\int \\sin^{n - 2}{x ...
But then others told me that "dx" is part of what's being integrated, and they started saying that we're led to believe that its just a delimiter in early courses because it'd be impossible for teachers to introduce "differentials," which is what things like dx and du are, so u-substitution isn't just a mnemonic, and the multiplication is ...
In Leibniz notation, the 2nd derivative is written as $$\dfrac {\mathrm d^2y} {\mathrm dx^2}\ ?$$ Why is the location of the $2$ in different places in the $\mathrm dy/\mathrm dx$ terms?
I'm taking differential equations right now, and the lack of fundamental knowledge in calculus is kicking my butt. In class, my professor has done several implicit differentiations. I realize that...